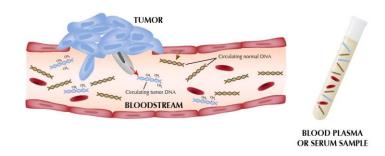
Towards more accurate, reproducible, and robust measurement and analysis of biological samples: International Standardization Efforts within ISO/TC 276 <u>Biotechnology</u>

Sheng Lin-Gibson, Ph.D.


Chief, NIST Biosystems and Biomaterials Division Convenor, ISO/TC 276/WG3 Analytical Methods Chair of US Mirror Committee to ISO/TC 276 September 11, 2018

- ISO/TC 276 is developing a suite of analytical measurement standards assessing the quality of biological samples
- ISO/TC276 and partners are working to better articulate "fit for purpose" and clarify actions needed for a specific purpose
- Expert input is needed to ensure that standards are balanced and address a need without becoming over burdensome

Focus on Liquid Biopsy (LB)

I. Measurements of Tumor DNA in LB: reference materials / interlaboratory evaluation of measurement quality

II. Measurements of Methylated DNA in LB

III. Measurements of Gene Copy Number Variants in LB

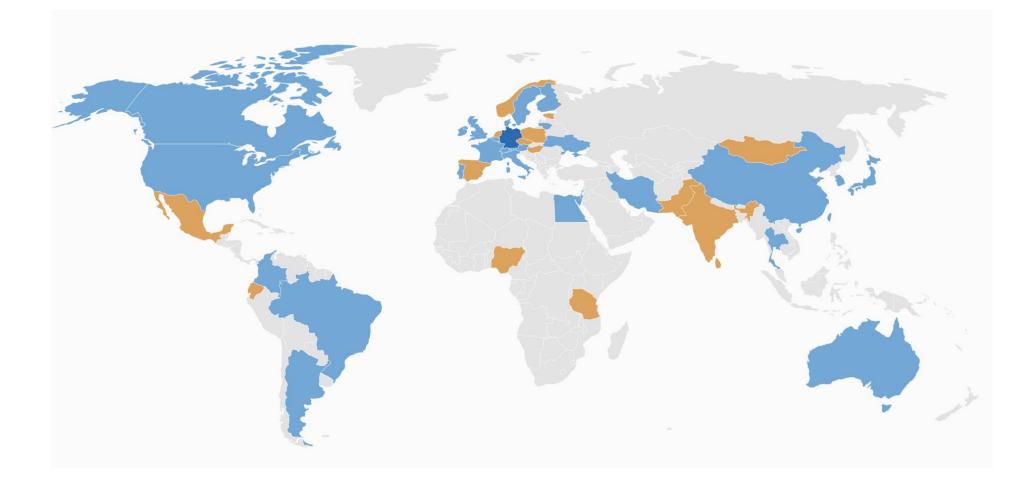
IV. Future work with exosomes

https://www.nist.gov/mml/bbd

Working to solve the following challenges

- Low concentration of mutations in high background of wild-type DNA
- Degraded in molecular weight
- Many mutations, which ones and what kinds to focus on
- Measuring assay performance: limits of detection, specificity, ranges...
- Process controls (pre-analytical process steps)
- Calibrators (standards) that work with different methods and instruments (commutability)

Scope of ISO/TC 276 Biotechnology


Standardization in the field of biotechnology processes that includes the following topics:

- Terms and definitions;
- biobanks and bioresources;
- analytical methods;
- bioprocessing;
- data processing including annotation, analysis, validation, comparability and integration;
- metrology.

ISO/TC 276 Biotechnology will work closely with related committees in order to identify standardization needs and gaps, and collaborate with other organisations to avoid duplications and overlapping standardization activities

Structure	Liaisons	Meetings
Reference	↓≞	Title
ISO/TC 276/WG	1 🚯	Terminology
ISO/TC 276/WG	2 🕄	Biobanks and bioresources
ISO/TC 276/WG	3 🚯	Analytical methods
ISO/TC 276/WG	4 🚯	Bioprocessing
ISO/TC 276/WG	5 🕄	Data processing and integration

Participating Members (29)

Observing Members (15)

Various Liaisons, including BBMRI-ERIC

New Biobanking Standard published by ISO/TC276/WG2

ISO 20387:2018 Biotechnology -- Biobanking -- General requirements for biobanking

This document specifies general requirements for the competence, impartiality and consistent operation of biobanks including quality control requirements to ensure biological material and data collections of appropriate quality.

- Competence + quality management principles tailored to biobanks
- Menu of processes covering general and specific requirements

Biobanking Standards and Best Practices Development

Collect & Process Store & Maintain Distribute & Deploy

Quality & quality attributes of biological material Perform functions Characterization Control & Track

Standard s

Management standard General requirements Technical standards

- The Analytical Methods Working Group aims to develop standards for accurate, reproducible and robust measurement and analysis in support of biotechnologies.
- WG 3 will develop a package of International Standards for biologically relevant molecules and entities, including nucleic acids, proteins, and cells.
- This WG will develop horizontal standards and, when applicable, vertical / particular standards for industry sectors.

	Analytical Methods for Cells
ISO/CD 20391-1	Biotechnology - Cell Counting – Part 1. General guidance on cell counting methods
ISO/CD 20391-2	Biotechnology - Cell Counting – Part 2. Experimental Design and Statistical Analysis to Quantify Counting Method Performance
ISO/WD 23033	Cell Characterization – General guide for characterization of human cells for therapeutic applications
ISO/PWI 23511	Biotechnology – General guidance on detection methods of cell cross- contamination

Current Programme of WG3 (cont.)

	Analytical Methods for Nucleic Acids
ISO/CD 20688-1	Biotechnology - Nucleic acid synthesis – Part 1: General definitions and requirements for the quality control of synthesized oligonucleotides
ISO/PWI 20688-2	Biotechnology – Nucleic acid synthesis – Part 2: General definitions and requirements for the production and quality control of synthesized gene fragments, genes and genomes
ISO/CD 20395-1	Biotechnology - Guidelines for evaluating the performance of quantification methods for nucleic acid target sequences - Part 1: qPCR and dPCR
ISO/PWI 20397-1	Biotechnology - General requirements for massive parallel sequencing - Part 1: Upstream processes
ISO/WD 20397-2	Biotechnology - General requirements for massive parallel sequencing - Part 2: Methods to evaluate the quality of sequencing data

Do I need to / should I adopt standards from ISO Analytical Methods?

It depends \rightarrow Fit for purpose

- Ex: Does sample meet the required qualities for national/multinational study?
- Ex: Has my sample changed / degraded over time?
- Ex: Does my current measurement provide sufficient information, and can I practically adopt a new method?

- Defined as "in line with prearranged requirements for an intended use" (ISO 20387)
- Fundamental to effective, efficient biobank operations
 Applies to biological material, its associated data, or the biobank itself

- FFP Parameters will be context-specific:
 - Analytical methodologies / approaches /studies to be employed by end users
- Quality is only one aspect of FFP:
 - Evaluation based on intended purpose(s) or methodology
 - "Sufficient quality" for one methodology or set of specimens / data may not be sufficient for another use
 - Other FFP considerations could include consent details and appropriate access policies for specific needs

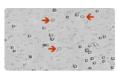
Ongoing ISO/TC 276/WG3 Analytical Methods Standards

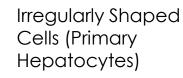
NOTE: only scope, outline, and materials already in the public domain shown. BBMRI members should contact Liaison for full documents under development

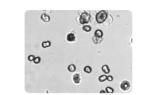
Standards for cell counting

Cell count is a fundamental measurement in biosciences and biotechnology.

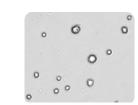
Cell number can effect:

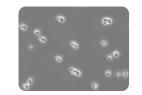

- Bioassays that are normalized by activity per cell
- Manufacturing process for cells and biopharmaceutical products
- Potency and efficacy of a cell therapy treatment (dosing)


Cell count is often the first measurement to check the "quality" of cells received from a biobank



Challenges for Cell Counting, a Fundamental Measurement


Clumpy Cells (MCF-7 breast cancer cell line)



Cells of varying size (MSCs)

Budding Cells

(Yeast Cells)

How can we compare results from different methods and platforms?

How can we provide confidence in cell

counting methods in

the absence of

Physical Standard

Reference

Ground Truth

Method

•

٠

•

Wide Range of Counting Devices

Manual Light Microscopy

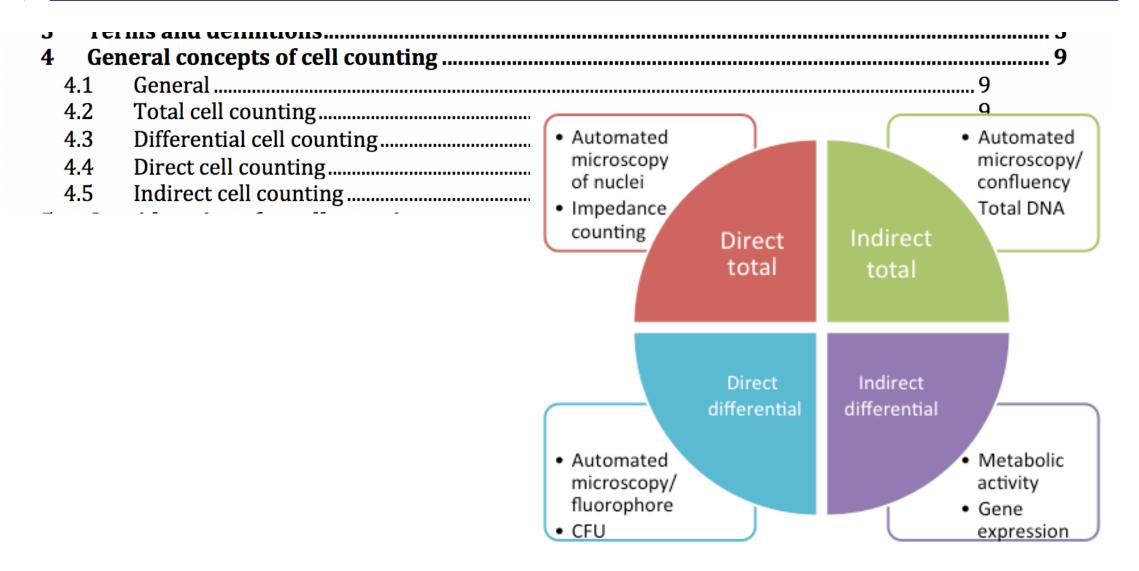
Automated Light Microscopy

Automated Fluorescent Microscopy

Coulter (impedance) Counters

Flow Cytometers

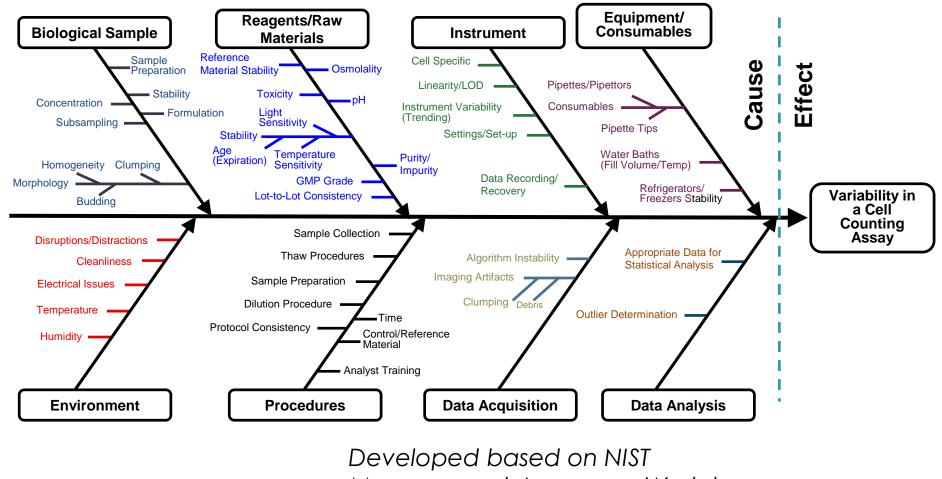
New/Custom Counters


ISO 20391-1: 2018 Biotechnology - Cell Counting – Part 1. General guidance on cell counting methods

Scope

- This document defines terms related to cell counting for biotechnology. It describes counting of cells in suspension (generally cell concentration) and cells adhered to a substrate (generally area density of cells). It provides key considerations for general counting methods (including total and differential counting, and direct and indirect counting) as well as for method selection, measurement process, and data analysis and reporting.
- This document is applicable to the counting of all cell types mammalian and non-mammalian (e.g. bacteria, yeast) cells.
- This document is not intended for counting of cells while in a tissue section or a biomaterial matrix.
- Several sector/application-specific international and national standards for cell counting currently exist. When applicable, the user can consult existing standards when operating within their scope (specific measurement techniques and/or applications).

ISO 20391-1: 2018 Biotechnology - Cell Counting – Part 1. General guidance on cell counting methods


ISO 20391-1: 2018 Biotechnology - Cell Counting – Part 1. General guidance on cell counting methods (cont.)

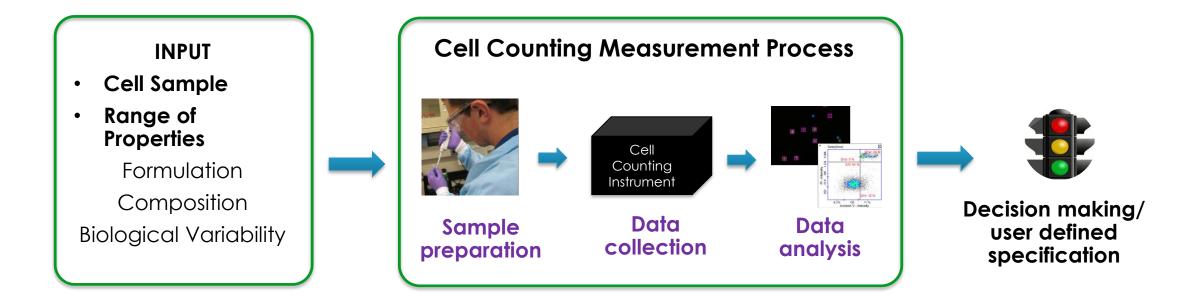
5	Con	nsiderations for cell counting measurements	
		Selection of a cell counting method1	
5		Considerations for selecting a cell counting method1	
5	.3	Sampling of cells for counting1	1
5		Preparation of cell samples for counting1	
		1 Environmental factors	
	5.4.2	2 Procedures	2
	5.4.3	3 Quality and stability of reagents1	2
5		Performing a measurement	

6 Qualification, validation, and verification	
6.1Instrument qualification6.2Method validation and verification	
6.2 Method validation and verification	
6.3 Reference materials	14
6.3.1 Certified reference materials	14
6.3.2 In-house reference materials	14
6.3.3 Uses of reference materials	14
7 Data processing, analysis, and reporting	
 7.1 Data processing and analysis 7.1.1 General 	14
7.1.1 General	14
7.1.2 Image processing and analysis	
7.1.3 Gating	15
 7.1.1 General mage processing and analysis 7.1.2 Image processing and analysis 7.1.3 Gating 7.1.4 Coincidence correction 	
7.2 Reporting	
Annex A (informative) Description of common cell counting methods	
Annex B (informative) Common cell counting methods for various	
purposes	
Bibliography	

Sources of variability in a cell counting measurement

Measurement Assurance Workshop, May 2015

Simon, C. G., Lin-Gibson, S., Elliott, J. T., Sarkar, S., & Plant, A. L. (2016). Strategies for Achieving Measurement Assurance for Cell Therapy Products. *Stem Cells Translational Medicine*, *5*(6), 705-708.

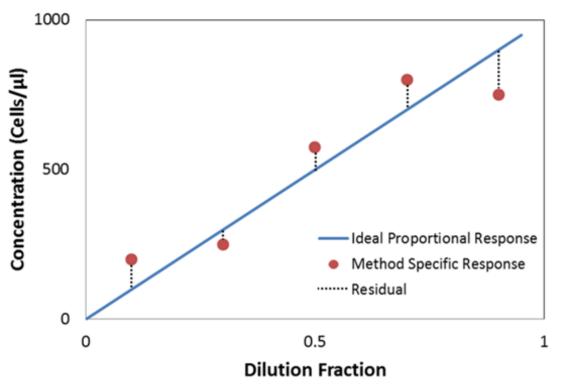

Still, there is a need for a practical method to assess the quality of cell counting measurements

How can we provide confidence in cell counting methods in the absence of reference method, physical standard, or ground truth

How can we compare results from different methods and platforms?

MEASUREMENT PROCESS FOR CELL COUNTING

Need confidence in the measurement process over the range of samples that are intended to be measured in order to enable decision making based on cell count



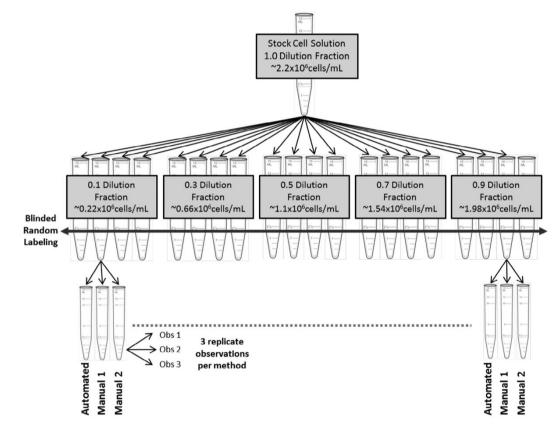
ISO/CD 20391-2 Biotechnology - Cell Counting – Part 2. Experimental Design Statistical Analysis to Quantify Counting Method Performance

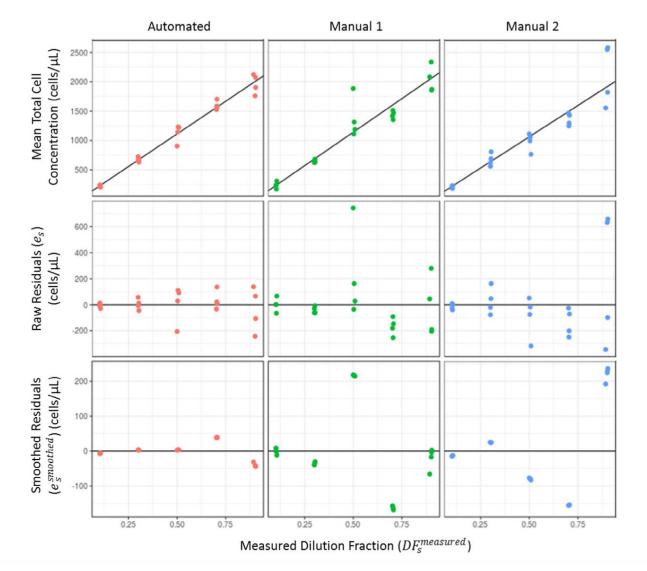
The principle of proportionality is used to evaluate the quality of a cell counting measurement process

Proportionality serves as an internal control

- In a proportional system, change in dilution (DF) is always accompanied by a proportional change in the measured cell quantity
- Proportionality must hold true for an accurate cell counting process; deviation from proportionality indicates measurement error.

Concepts within Cell Counting Part 2 standard




Figure 2. Schematic representation of the cell counting dilution series study experimental design.

Experimental design with a data structure to enable robust statistical analysis while also taking into consideration sample stability/ availability and operational constraints

Evaluating the quality of a cell counting measurement process via a dilution series experimental design. Cytotherapy 2017 Dec;19(12):1509-1521. doi: 10.1016/j.jcyt.2017.08.014. Epub 2017 Oct 14. Sarkar, Lin-Gibson, et al

Concepts within Cell Counting Part 2 standard

Deviation from proportionality on smoothed data (i.e., smoothed-residual)

- Reduces the contribution of imprecision
- PI summarizes the smoothed residual information

Using an experimental design involving a dilution series study, quantitative indicators of repeatability (CV) and deviation from proportionality (PI and R 2) can be calculated to provide an assessment of measurement quality.

Cytotherapy 2017 Sarkar, Lin-Gibson, et al

Next Steps for Cell Counting Part 2 standard

- DIS ballot in process
- Publication date anticipated late 2019

Authentication of Human Cell Lines

• China proposed to develop an ISO standard on cell line authentication

The ATCC SDO published a US National standard, ANSI/ATCC ASN-0002:
 Authentication of Human Cell Lines: Standardization of STR Profiling.

• Agreement to jointly develop an international standard. Project planning under way.

ISO/WD 23033 Cell Characterization – General guide for characterization of human cells for therapeutic applications

Scope

- This International Standard defines terms and serves as a general guide for the characterization of cellular therapeutic products intended for human use. Aspects of this document are also applicable to intermediates of cellular therapeutic products.
- It provides considerations for general cell characterization, including
 processes to define critical quality attributes (i.e., identity, quantity, purity,
 potency, viability, stability and sterility) and approaches to select and
 design measurement methods that are fit-for-purpose.
- This standard is applicable for the characterization of cellular components of tissue engineered products.
- NOTE Requirements for safety testing of cells and cell therapy products are addressed in detail in relevant legislation and guidance documents.

ISO/DIS 20395-1 Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target seauences — Part 1: aPCR and dPCR

1 Scope

This document provides generic guidelines for evaluating the performance and ensuring the quality of methods used for the quantification of specific nucleic acid sequences (targets). This will serve to ensure confidence in the data generated and demonstrate that a selected method is fit for its intended purpose.

The document is applicable to the quantification of DNA and RNA target sequences using either digital (dPCR) or quantitative real-time PCR (qPCR) amplification technologies. It applies to target sequences present in nucleic acid molecules including double-stranded DNA (dsDNA) such as genomic DNA (gDNA) and plasmid DNA, single stranded DNA (ssDNA), complementary DNA (cDNA), and single stranded RNA (ssRNA) including ribosomal RNA (rRNA), messenger RNA (mRNA), and long and short non-coding RNA (microRNAs (miRNAs) and short interfering RNAs (siRNAs)), as well as double-stranded RNA (dsRNA).

The document applies to nucleic acids derived from biological sources such as viruses, prokaryotic and eukaryotic cells, cell-free biological fluids (e.g. plasma or cell media) or *in vitro* sources (e.g. oligonucleotides, synthetic gene constructs and *in vitro* transcribed (IVT) RNA). This document is not applicable to quantification of very short oligonucleotides.

- Current status: Translation period closes and DIS ballot opens this week
- All experts can review the draft by contacting their National Standards Body; BBMRI member can access document via their liaison status.

+

1	Scope7
2	Normative references
3	Terms and definitions
4	Design of measurement procedure15
4.1	General
4.2	Quantification method
4.2.1	General
4.2.2	qPCR determination of concentration using a calibration curve
4.2.3	dPCR determination of copy number concentration using molecular counting
4.2.4	Relative quantification by qPCR
4.2.5	dPCR determination of ratio between two targets
4.3	Normalisation strategy
4.4	Controls
5	Sample QC: Total nucleic acid quantity, integrity and purity
5.1	General
5.2	Total nucleic acid quantification21
5.2.1	General
5.2.2	Spectrophotometry
5.2.3	Fluorometry
5.2.4	Assessment of total DNA concentration using qPCR/dPCR
5.3	Nucleic acid integrity
5.4	Nucleic acid purity

6	Assay design and optimisation for quantification of nucleic acid target sequences	23
6.1	Assay design General	23
6.1.1		
6.1.2	Amplicon selection	23
6.1.3	Primer and probe design	24
6.1.4	In silico evaluation of specificity	24
6.1.5	RT-qPCR/RT-dPCR design	24
6.2	Assay optimisation using purified samples	25
6.2.1	General	25
6.2.2	Optimisation of fluorescence signal	25
6.2.3	(RT)-qPCR amplification efficiency	25
6.2.4	RT efficiency	26
6.2.5	Specificity	26
6.3	Method optimisation using test samples	26
6.3.1	Effect of PCR inhibitors in sample matrix	26
6.3.2	Presence of Nucleic Acid Contaminants in test sample	27
6.3.3	Validated range	27
6.4	No Template Controls	28

7	Data QC and analysis28	}
	General	
7.2	Acceptance criteria	3

© ISO 2018 – All rights reserved

7.2.1	qPCR	28
7.2.2	dPCR	28
	Threshold setting	
	qPCR	
	dPCR	
	Data pre-processing	
7.4.1	qPCR using calibration curve	29
	Relative quantification (qPCR)	
	Identification of outliers	

8	Nucleic acid quantification measurement method validation	. 29
8.1	General	.29
8.2	Precision	. 30
8.3	LOQ	31
8.4	LOD	
8.5	Linearity	31
8.6	Trueness	
8.7	Robustness	
8.8	Specific considerations for qPCR method validation	. 32
8.8.1	Repeatability of qPCR- or RT-qPCR	. 32
8.8.2	Intermediate precision and reproducibility of qPCR- or RT-qPCR	. 33
8.9	Specific considerations for dPCR method validation	.33
9	Nucleic acid quantification measurement traceability and comparability	.33
9.1	Metrological Traceability	
9.2	Use of Calibrators and Reference Materials	
9.3	Instrument Calibration	
10	Maagurant uu santainte (MU) in sDCD and dDCD maaguranta	24
	Measurement uncertainty (MU) in qPCR and dPCR measurements	
10.1	General requirements for (MU) calculations:	
10.2	qPCR measurement uncertainty	.35
10.3	Ratio-based measurements	
10.4	dPCR measurement uncertainty	
11	Reporting	36

Annex	x A (informative) Spectrophotometry	37
A.1	General	37
A.2	Relationship between absorbance and total nucleic acid concentration	37
A.3	Absorbance ratios and nucleic acid purity	37
Annex	B (informative) Nucleic acid integrity	39
B.1	General	39
B.2 B.2.1	Techniques for evaluation of DNA integrity Electrophoresis	39 39
B.2.2 B.2.3	Electrophoresis Long range PCR PCR assay with differential size amplicons	39 39
B.3 B.3.1 B.3.2	Techniques for evaluation of RNA integrity Electrophoresis RT-qPCR for 5′/3′ mRNA ratio	39 40
B.3.3 B.3.4	RT-qPCR assay of repetitive elements RT-qPCR assays with different size amplicons	40
Annex	c (informative) PCR efficiency	41
C.1	General	
C.2	Experimental design	41

C.3	Calculations	.41
Annex	D (informative) Measurement uncertainty	.43
D.1	General	.43
D.2	Sources of uncertainty for whole process (qPCR)	.43
D.3	Sources of uncertainty for dPCR	.44
Annex	E (informative) MIQE and dMIQE Checklists	.45
E.1	General	.45
E.2	MIQE checklist	.45
E.3	dMIQE checklist	.47
Biblio	graphy	. 50

Č.

Other Projects under discussion

Needs for Standards in Rapid Microbial Testing

8th meeting of ISO/TC 276 WG3 Beijing, China 6/15/18

Dawn Henke Standards Coordinating Body

Justification for Development of this Standard

- Lead to decrease in time to validate new rapid microbial testing methods
- Lead to decrease in time to develop new biologic products
- Lead to decreased cost for manufacturers of biologic products
- Lead to the development of novel RMTM strategies
- Streamline the use and validation process of new rapid microbial methods
- Maintain or improve safety and efficacy of biologic products

- ISO/TC 276 is developing a suite analytical measurement standards assessing the quality of biological samples
- TC276 and partners are working to better articulate "fit for purpose" and clarify actions needed for a specific purpose
- Expert input is needed to ensure that standards are balanced and address a need without overburdensome

Selected Resources for Biobanks

- ISBER Self- Assessment Tool (SAT)
- Integrated Biobank of Luxembourg's (IBBL) Biorepository Proficiency Testing Program
- Biospecimen Stability Testing Calculator (STABCAL)
- Pre-analytical Biorepository External Quality Assessment (EQA) Survey
- Standard Pre-Analytical Code (SPREC)
- International Repository Locator (IRL)
- Neurological Disease Metadata

• ISBER Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research

8-C


Best Practices

- OECD Guidelines for Human **Biobanks and Genetic** Research Databases
- OECD Best Practice Guidelines for Biological Resource Centres
- National Cancer Institute (NCI) Best Practices for Biospecimen Resources

- International Standards Organization
- –ISO 20387 General Requirements for Biobanks
- -ISO 9001:2000 Quality Management Systems -- Requirements
- -ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories
- -ISO TC 276 Biotechnology
- College of American Pathologists **Biorepository Accreditation Program**
- CTRNet Biobank Certification Program

